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An investigation was conducted into how a large group of
sound quality metrics might be used to predict user reactions to
sounds from a particular type of product, as expressed in terms
of product-specific attributes such as ratings of “acceptability”
and perceived “quality” of the product. We assume that a jury
study has already been conducted for such attributes, producing
rating values for various product sounds, and that the objective
is to determine which metrics or combinations of metrics can best
be used to predict user judgments for the sounds of different ver-
sions of the product. The basic methodology employs the use of
principal components analysis to group the large number of sound
quality metrics into just a few orthogonal (principal) components
or factors composed of a weighted sum of the original metrics. A
“metrics profile” is then computed for each sound based on the
resulting principal components, followed by the creation of a
transformation matrix to convert between mean jury ratings and
the metrics profile. The expected performance of this transfor-
mation in predicting jury ratings from the metrics profile is then
assessed. The procedure is illustrated using an example drawn
from yard maintenance equipment.

This article describes an investigation that was conducted into
how sound quality (SQ) metrics might be used to predict user reac-
tions to product sounds, where such user reactions are expressed
in terms of judgments or ratings on product-specific attributes
such as “acceptability” of the sound, or perceived “quality” or
overall “effectiveness” of the product itself based on its sound.
We assume that at least one jury study has already been conducted
on the product class of interest, producing attribute ratings for dif-
ferent versions of the product. The objective then is to determine
whether various metrics or weighted combinations of metrics can
be used to predict user ratings for the sounds of similar products,
avoiding the need to reconvene separate jury studies for each
product iteration.

The basic methodology that we have investigated in an at-
tempt to meet this objective involves using principal components
analysis (PCA) to group a large number of SQ metrics into just
a few orthogonal (principal) components or factors, where such
components are composed of a weighted sum of the (standard-
ized) original metrics. A “metrics profile” (MP) is next computed
for each sound based on the first few principal components (PCs),
followed by the creation of a “transformation matrix” to convert
between mean jury ratings and the MPs.

Principal Components Analysis

PCA and the related method of common-factor analysis (CFA)
are often used to determine if a large number of observed variables
can be accounted for in terms of a smaller number of inferred
“fundamental” factors.! In our case, PCA was used to transform
a large set of metrics into a smaller set of linear combinations of
these metrics based on the values of the metrics calculated over
a large set of sounds originating from a particular product class.
The resulting combinations are the “principal components” (PCs).
This new set of variables accounts for most of the total observed
variance, with each combination being orthogonal to the others,
meaning that there is no redundant information from one PC to the
next. The PCs as a whole form an orthogonal basis for the space
of the data, and the first PC is a single axis in this space. When
each observation is projected onto this axis, the resulting values
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form a new variable containing the maximum variance among all
possible choices of the first axis. The second PC is another axis
in this space, perpendicular to the first, and the variance of this
particular variable is the maximum among all possible choices of
this second axis, and so on. Usually the first few PCs will account
for a large portion of the total variance, and it is this reduction that
makes PCA and CFA attractive.

Example Set of Sound Quality Metrics

A total of 25 different metrics was calculated on a number of
product sounds that had been presented to jurors in a previous
jury study involving yard maintenance equipment. These metrics
are summarized in Table 1. As the characteristics of the product
change, we expect some of the metric values to change in a sig-
nificant way, but not others. Additional metrics could be added
to this list, but the ones in Table 1 will be used to illustrate the
techniques employed here.

The first 17 metrics in Table 1 are fairly standard ones and
were calculated using routines as implemented in a system sup-
plied by LMS. Metrics 18-25 are customized metrics that we have
developed and used in the past.? These customized metrics relate
to “spectral balance” (high vs. low frequency content), tonality,
and modulation. A brief description of each of these particular
metrics is given below.

Metric 18 (spectral rotation) represents the balance of high
frequencies relative to low frequencies, with an A-weighted filter
spectrum taken as “neutral.” This is done by determining the de-
gree of “pivoting” of the A-weighting curve needed for minimizing
the difference between the original A-weighted, 1/3-octave band

Table 1. Description of metrics calculated on sounds used in
consumer jury study.

Metric Name / Description Units
1 Linear SPL dB, re 20 ppa
2 A-weighted SPL dB, re 20 ppa
3 B-weighted SPL dB, re 20 ppa
4 Zwicker loudness (free field) Sones
5  Roughness Asper
6  Sharpness (free field) Acum
7 Fluctuation strength Vacils
8  ANSI speech interference level dB
9  Open articulation index %
10  Kurtosis Unitless
11 Pitch unit Hz
12 Pitch value Pa
13 Tonality Ratio
14  Impulse occurrence rate Hz
15  Impulse duration msec
16 Impulse peak level dB, re thres.
17 Impulse rise rate dB/msec
18  “Rotation” of A-weighted 1/3-octave band dB
spectrum about 1000 Hz
19  Spectral “roughness” )avg. deviation from dB
rotated A-weighted spectrum)
20  Low-frequency, slow-modulation index %
21  Low-frequency, fast-modulation index %
22 Mid-frequency, slow-modulation index %
23 Mid-frequency, fast-modulation index %
24  High-frequency, slow-modulation index %
25  High-frequency, fast-modulation index %
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spectrum and an amplitude-shifted and rotated version of the
A-weighting curve itself, while matching the overall A-weighted
level. A positive rotation (rotation of the A-weighting curve in the
counter-clockwise direction) corresponds to a relative increase in
the “treble” end and a reduction in the “bass” end, while a nega-
tive rotation corresponds to the reverse. We have used 1000 Hz
as the “pivot point” for the rotations, and the frequency analysis
range includes the 1/3-octave bands from 400 Hz to 2500 Hz. This
metric is given in terms of dB per 1/3-octave band.

Metric 19 (spectral roughness) reflects the deviation of the actual
1/3-octave spectrum from a “smooth” spectrum and is a measure
of its spectral irregularity, which is affected primarily by strong
tones in the sound. Information for determining this metric arises
out of the computations needed for Metric 18 in the form of level
differences between the shifted and rotated A-weighting factors for
1/3-octave bands and the original 1/3-octave band spectrum. These
differences are then averaged across the frequency bands used in
the evaluation to yield an average value for the spectral deviation.
A large value can indicate the presence of strong tones that deviate
away from the smooth (rotated and shifted) A-weighting curve.
This metric is expressed in terms of dB. Note that this metric is
different from the traditional time-based roughness described by
Metric 5. It also represents another way of estimating the tonality
of the sound (other than Metric 13).

The six modulation metrics (Metrics 20-25) are designed to
represent different types of modulation that may be present in
the measured signals. Modulation of sounds is a characteristic
that people readily perceive and can be an undesirable acoustic
characteristic of machinery sounds. Slow modulation is perceived
as variations in amplitude, while fast modulation can be perceived
as a “fluttering” or “buzz-like” characteristic. To distinguish be-
tween these different types of modulations, the Hilbert transform
is used to compute the amplitude envelopes of the signals, which
are then filtered between 0.5 and 8 Hz to detect “slow” modula-
tion, and between 50 and 90 Hz to detect “fast” modulation. In
addition, since product sounds can be quite complicated, these
fast and slow modulations are evaluated within three different
frequency ranges — below 400 Hz, between 400 and 2500 Hz, and
above 2500 Hz. A modulation “index” is then formed by taking
the ratio of the rms amplitude of the slow or fast envelope signal

Table 2. Rotated and sorted PC weighting factors for the first four prin-
cipal components computed from a set of 25 SQ metrics calculated for
32 sounds.

Metric Number PC1 PC2 PC3 PC4
3 0.402 —0.003 —0.014 —-0.123
4 0.392 —0.03 0.003 —0.004
1 0.362 0.012 —0.057 —-0.223
2 0.354 0.001 —0.013 0.086
8 0.33 —0.027 0.029 0.118
9 —0.323 0.045 0.004 —-0.123
5 0.255 0.215 0.136 —0.165

22 —0.123 —0.498 0.057 -0.118
7 0.14 —0.369 0.019 0.087
18 0.061 0.359 —0.166 0.274
20 -0.2 -0.27 0.037 0.188
21 —-0.127 0.247 0.085 0.014
11 —0.182 0.216 0.072 —-0.124
13 —0.059 0.113 0.478 0.079
12 0.096 0.14 0.476 0.075
15 —0.088 0.267 —0.419 0.091
23 —0.063 —0.15 0.39 0.01
19 —0.032 0.3226 0.329 —-0.087
17 —-0.029 0.083 0.013 0.359
16 —0.009 0.008 —0.06 0.347
25 0.081 0.071 —0.043 —0.32
14 0.023 —0.068 0.077 0.3
24 —0.082 —0.06 0.055 —0.295
10 0.069 —0.0-44 —0.025 0.291
6 0.051 —0.045 0.164 0.288
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to the rms amplitude of the original envelope obtained from the
filtered sound pressure signal. The modulation metrics are then
formed by expressing these indices in terms of percent.

Generation of PC-Based Metrics Profile

Prior to calculating the principal components “weights,” the
values of the sound quality metrics computed for each sound are
first “standardized” (centered with zero mean and normalized to
a standard deviation of 1). This step is needed because the metrics
may have completely different units of measure from each other.
Figure 1 shows the relative contributions of each of the principal
components calculated from the standardized matrix formed from
the 25 metrics described in Table 1 and computed on each of 32
different sounds that had been previously presented to a jury of
consumers.

These sounds consisted of variations on the sound of a particular
product targeted for yard maintenance, most of which were created
by altering the sounds of the different sources and mechanisms
within the device (the sounds of four “extra” existing products in
this class were also included in this set). The information in Figure
1 indicates that the first four PCs explain about 85% of the observed
variance in the SQ metric values. These four PCs were retained to
represent the metrics and were then rotated (using a varimax rota-
tion) and sorted using a modified form of factor analysis to produce
the weighted groupings of metrics shown in Table 2.

The PC weightings provide guidance as to what each of the PCs
in the reduced set primarily denotes. For example, referring back
to the metric descriptions in Table 1, the weightings for each of
the PCs in Table 2 appear to group the metrics into what could
roughly be translated as:

e Loudness — related metrics such as loudness and the overall

SPLs as well as Al and speech interference level.

* Modulation — related metrics such as the mid-frequency slow
modulation index, fluctuation strength, etc.

e Tonality —related metrics such as tonality, pitch, and the “spec-
tral roughness” index.

e Impulsiveness/peakiness—related metrics such as impulse peak
level, impulse rise rate, Kurtosis, etc.

Using different numbers of PCs will, of course, produce differ-
ent groupings, and it is often revealing to try out using different
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Figure 1. Judging “importance” of the principal components obtained from
a set of 25 sound quality metrics calculated for 32 different sounds: (a)
“scree” plot of the eigenvalues, (b) cumulative percentage of observed vari-
ance represented by the PCs.
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Figure 2. Jury ratings on the attribute “perceived power” (on a normalized
scale of 0-100) for the sounds of 32 different versions of a piece of yard
maintenance equipment, vs. ratings predicted by multiplying an SQ “metrics
profile” derived from these same sounds by a transformation vector.

numbers of PCs, while keeping in mind the guiding information
such as that provided by Figure 1.

The weightings for the reduced set of PCs are then used to cal-
culate the corresponding “scores” for each of the sounds under
consideration using the model for each PC:?

PCn = w(n), Y, + w(n),Y, + ... + W(H)pr (1)
where:
PCn = resulting “score” for the nth PC
Y = (standardized) metric values for each of the p metrics
w = weights on these variables
For our example, the resulting scores would then consist of four
values (from the four PCs) for each of the 32 sounds. We refer to
these values as a (PC-based) “metrics profile” (MP) — one MP for
each sound. The MPs are then all shifted upward so that all are
greater than zero for ease of interpretation.

Transformation from Metrics Profile to Jury Ratings

The MP scores, along with the mean values of normalized jury
ratings previously obtained for these same sounds, were then used
to calculate a linear transformation matrix X between the MPs
and the jury ratings. This was done by solving for X in the general
system of equations described by:

AX=B (2)

where:

A = NxQ matrix of metrics profile scores for the sounds
(N = number of sounds, Q = number of principal compo-
nents retained)

B = NxM matrix of mean jury ratings on M attributes for these
same sounds

X = desired QxM transformation matrix

Since N (the number of sounds) will generally be greater than Q
(the number of PCs retained), Eq. 2 becomes an over-determined
system of equations (32 equations in four unknowns for our ex-
ample). The transformation matrix (or vector if jury ratings are for
a single attribute only) X can then be determined in a least-squared
error sense using, for example, singular-value decomposition to
generate a “pseudo-inverse” of the A matrix.?

Figure 2 summarizes how well the resulting transformation
vector in this example was able to predict the jury ratings for the
attribute “perceived power” of the product using the MP values
derived from the first four principal components. In this case, the
R? “goodness-of-fit” indicator was about 47%. The four furthest
“outliers” in Figure 2 are associated with the four sounds included
in the jury study that were not created by altering the sounds of
various components in the baseline unit (these “extra” sounds
were the sounds of competitor units, alternate models, etc.). If we
do not include these four outliers, the resulting R? value increases
to about 88%.

This same transformation could now be evaluated in terms
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of predicting user reactions to the sounds of other products in
this same general class using the same set of weighting factors
given by Table 2 to compute the MP scores for these new sounds.
Alternatively, PCA could be applied again to form a new set of
weighting factors based on the SQ metrics values computed for
the new set of sounds. However, this latter approach would not be
recommended unless the number of new sounds (the number of
“observations” for the PCA) was comparable to or greater than the
number of sounds used to form the original PC weighting factors
like those in Table 2.

Conclusions

An approach has been described that attempts to establish a link
between a set of objective sound quality metrics and subjective
impressions of product sounds. The method makes use of princi-
pal components analysis to first reduce a large number of metrics
into a weighted combination of smaller groups of metrics. To do
this, PCA is applied to a large set of metric values calculated on
a large set of sounds, all of which are presumed to originate from
a general type of product class (vacuum cleaners or front-loading
washing machines or lawn tractors, for example). The first few
PCs are then used to develop a set of weighting factors that are
applied to the metric values to obtain a (reduced dimension) PC-
based “metrics profile.”

A transformation matrix between the resulting MP “scores” for
these sounds and a set of corresponding jury ratings on particular
attributes for these same sounds can then be calculated and evalu-
ated in terms of its ability to predict the jury ratings. A satisfactory
transformation can therefore allow physical measurements of
sounds from different products or product versions within a prod-
uct class (made as changes are made to the product) to reasonably
predict the effect of these changes on perceived SQ without the
need to conduct repeated jury studies.

Applying the technique to a set of 25 metrics calculated on the
sounds from 32 different variations of a particular type of yard
maintenance equipment resulted in a regression coefficient of
0.47 when used to predict attribute-rating values obtained from a
consumer jury that was exposed to these same sounds. The next
step would be to assess the accuracy of the ratings predicted if
this same transformation were then applied to a new set of sounds
obtained from this same product class.

Future directions in this area include investigating the possible
use of alternate statistical techniques that are somewhat related to
principal components analysis, such as the regression techniques of
principal components regression and partial least-squares (PLS) re-
gression. This later technique may offer a more direct and possibly
more robust way to generate a reduced-order model for predicting
SQ ratings from metric values than the PCA-based metric-profiles
approach described here.

PLS can be thought of as a cross between multiple linear regres-
sion and PCA, but unlike PCA, PLS directly considers the observed
response values (the jury ratings in our case), finding combinations
of predictor PCs that have large covariance (a measure of the degree
to which two variables change together) with response values. In
general, PLS is more of a predictive technique compared to the
more interpretive technique of PCA. We hope to report on the
results of this and our other on-going work in these areas in the
near future.
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