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Correlating Sound Quality Metrics
and Jury Ratings

An investigation was conducted into how a large group of 
sound quality metrics might be used to predict user reactions to 
sounds from a particular type of product, as expressed in terms 
of prod uct-specific attributes such as ratings of “acceptability” 
and perceived “quality” of the product. We assume that a jury 
study has already been conducted for such attributes, producing 
rating val ues for various product sounds, and that the objective 
is to determine which metrics or combina tions of metrics can best 
be used to predict user judgments for the sounds of different ver-
sions of the product. The basic methodology employs the use of 
princi pal components analy sis to group the large number of sound 
quality metrics into just a few orthogonal (principal) components 
or factors com posed of a weighted sum of the original metrics. A 
“metrics profile” is then computed for each sound based on the 
resulting princi pal components, followed by the creation of a 
transformation matrix to convert between mean jury ratings and 
the metrics profile. The expected performance of this transfor-
mation in pre dicting jury ratings from the metrics profile is then 
assessed. The procedure is illustrated using an example drawn 
from yard maintenance equip ment.

This article describes an investigation that was conducted into 
how sound quality (SQ) metrics might be used to predict user reac-
tions to product sounds, where such user reactions are expressed 
in terms of judg ments or ratings on product-specific attributes 
such as “acceptability” of the sound, or per ceived “quality” or 
overall “effectiveness” of the product itself  based on its sound. 
We assume that at least one jury study has already been conducted 
on the product class of interest, producing attribute ratings for dif-
ferent versions of the product. The objective then is to deter mine 
whether various metrics or weighted combinations of metrics can 
be used to predict user ratings for the sounds of similar products, 
avoiding the need to reconvene separate jury stud ies for each 
product iteration.

The basic methodology that we have investigated in an at-
tempt to meet this objective involves using princi pal components 
analysis (PCA) to group a large number of SQ metrics into just 
a few orthogonal (principal) components or factors, where such 
components are composed of a weighted sum of the (standard-
ized) original metrics. A “metrics profile” (MP) is next computed 
for each sound based on the first few princi pal components (PCs), 
followed by the creation of a “transformation matrix” to convert 
between mean jury ratings and the MPs.

Principal Components Analysis
PCA and the related method of common-factor analysis (CFA) 

are often used to determine if a large number of observed variables 
can be accounted for in terms of a smaller number of inferred 
“fundamental” factors.1 In our case, PCA was used to transform 
a large set of metrics into a smaller set of linear combinations of 
these metrics based on the val ues of the metrics calculated over 
a large set of sounds originating from a particular product class. 
The result ing combinations are the “principal components” (PCs). 
This new set of vari ables accounts for most of the total observed 
variance, with each combination being orthogonal to the others, 
mean ing that there is no redundant information from one PC to the 
next. The PCs as a whole form an orthogonal basis for the space 
of the data, and the first PC is a sin gle axis in this space. When 
each observation is projected onto this axis, the resulting values 

form a new vari able containing the maximum variance among all 
possible choices of the first axis. The sec ond PC is another axis 
in this space, perpendicular to the first, and the vari ance of this 
particular vari able is the maxi mum among all possible choices of 
this second axis, and so on. Usually the first few PCs will account 
for a large portion of the total variance, and it is this reduction that 
makes PCA and CFA attractive.

Example Set of Sound Quality Metrics
A total of 25 dif fer ent metrics was calculated on a number of 

product sounds that had been pre sented to jurors in a previous 
jury study involving yard maintenance equipment. These met rics 
are summarized in Table 1. As the character istics of the product 
change, we expect some of the met ric values to change in a sig-
nificant way, but not others. Additional metrics could be added 
to this list, but the ones in Table 1 will be used to illustrate the 
techniques em ployed here.

The first 17 metrics in Table 1 are fairly standard ones and 
were calculated using routines as implemented in a system sup-
plied by LMS. Metrics 18-25 are customized metrics that we have 
developed and used in the past.2 These customized metrics relate 
to “spec tral balance” (high vs. low fre quency content), tonality, 
and modulation. A brief description of each of these particular 
metrics is given below.

Metric 18 (spectral rotation) represents the balance of high 
frequencies relative to low fre quen cies, with an A-weighted filter 
spectrum taken as “neutral.” This is done by determining the de-
gree of “pivoting” of the A-weighting curve needed for minimizing 
the difference between the origi nal A-weighted, 1/3-octave  band 

Table 1. Description of metrics calculated on sounds used in 
consumer jury study.

Metric Name / Description Units

 1 Linear SPL dB, re 20 µpa
 2 A-weighted SPL dB, re 20 µpa
 3 B-weighted SPL dB, re 20 µpa 
 4 Zwicker loudness (free field) Sones 
 5 Roughness Asper
 6 Sharpness (free field) Acum  
 7 Fluctuation strength Vacils 
 8 ANSI speech interference level dB
 9 Open articulation index %  
 10 Kurtosis Unitless 
 11 Pitch unit Hz
 12 Pitch value Pa  
 13 Tonality Ratio 
 14 Impulse occurrence rate Hz
 15 Impulse duration msec 
 16 Impulse peak level dB, re thres.
 17 Impulse rise rate dB/msec 
 18 “Rotation” of A-weighted 1/3-octave band dB
  spectrum about 1000 Hz 
 19 Spectral “roughness” )avg. deviation from dB
  rotated A-weighted spectrum)
 20 Low-frequency, slow-modulation index %  
 21 Low-frequency, fast-modulation index % 
 22 Mid-frequency, slow-modulation index %
 23 Mid-frequency, fast-modulation index %  
 24 High-frequency, slow-modulation index %
 25 High-frequency, fast-modulation index %
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to the rms amplitude of the origi nal envelope obtained from the 
filtered sound pressure sig nal. The modula tion metrics are then 
formed by express ing these indices in terms of percent.

Generation of PC-Based Metrics Profile
Prior to calculating the princi pal components “weights,” the 

values of the sound quality metrics computed for each sound are 
first “stan dard ized” (centered with zero mean and normalized to 
a stan dard de via tion of 1). This step is needed because the metrics 
may have com pletely differ ent units of meas ure from each other. 
Figure 1 shows the relative contributions of each of the prin cipal 
components calculated from the standardized matrix formed from 
the 25 metrics de scribed in Table 1 and computed on each of 32 
different sounds that had been previously presented to a jury of 
consumers.

These sounds consisted of variations on the sound of a particu lar 
product targeted for yard main tenance, most of which were created 
by altering the sounds of the different sources and mecha nisms 
within the device (the sounds of four “extra” existing prod ucts in 
this class were also included in this set). The information in Figure 
1 indicates that the first four PCs ex plain about 85% of the observed 
vari ance in the SQ metric values. These four PCs were retained to 
rep re sent the metrics and were then rotated (using a vari max rota-
tion) and sorted using a modi fied form of factor analysis to produce 
the weighted groupings of metrics shown in Ta ble 2.

The PC weightings provide guidance as to what each of the PCs 
in the reduced set primar ily denotes. For example, referring back 
to the metric descriptions in Table 1, the weight ings for each of 
the PCs in Table 2 appear to group the metrics into what could 
roughly be trans lated as:

Loud ness•	  – related metrics such as loudness and the overall 
SPLs as well as AI and speech inter ference level.
Modulation•	  – related metrics such as the mid-frequency slow 
modu lation index, fluctuation strength, etc.
Tonality•	  – related metrics such as tonal ity, pitch, and the “spec-
tral roughness” index.
Impulsiveness/peakiness•	  – related metrics such as impulse peak 
level, impulse rise rate, Kurtosis, etc.
Using different numbers of PCs will, of course, pro duce differ-

ent groupings, and it is often revealing to try out using differ ent 

spec trum and an amplitude-shifted and rotated version of the 
A-weighting curve itself, while match ing the overall A-weighted 
level. A positive rotation (rota tion of the A-weighting curve in the 
counter-clock wise direction) corre sponds to a relative increase in 
the “treble” end and a reduction in the “bass” end, while a nega-
tive rota tion corre sponds to the reverse. We have used 1000 Hz 
as the “pivot point” for the rotations, and the fre quency analysis 
range includes the 1/3-octave bands from 400 Hz to 2500 Hz. This 
metric is given in terms of dB per 1/3-octave band.

Metric 19 (spectral roughness) reflects the devia tion of the actual 
1/3-octave spec trum from a “smooth” spec trum and is a measure 
of its spectral irregu larity, which is affected primar ily by strong 
tones in the sound. Infor mation for determining this metric arises 
out of the compu ta tions needed for Metric 18 in the form of level 
differences between the shifted and rotated A-weighting factors for 
1/3-octave  bands and the original 1/3-octave band spec trum. These 
differ ences are then aver aged across the frequency bands used in 
the evalua tion to yield an average value for the spectral deviation. 
A large value can indicate the presence of strong tones that devi ate 
away from the smooth (rotated and shifted) A-weighting curve. 
This metric is expressed in terms of dB. Note that this metric is 
different from the traditional time-based rough ness described by 
Metric 5. It also represents another way of estimating the tonal ity 
of the sound (other than Metric 13).

The six modulation metrics (Metrics 20-25) are designed to 
represent different types of modula tion that may be present in 
the measured signals. Modulation of sounds is a characteristic 
that people read ily perceive and can be an undesirable acoustic 
characteristic of machinery sounds. Slow modu lation is per ceived 
as varia tions in amplitude, while fast modulation can be perceived 
as a “fluttering” or “buzz-like” char acteristic. To distinguish be-
tween these different types of modulations, the Hilbert trans form 
is used to compute the amplitude envelopes of the signals, which 
are then filtered between 0.5 and 8 Hz to detect “slow” modula-
tion, and between 50 and 90 Hz to detect “fast” modulation. In 
addition, since product sounds can be quite compli cated, these 
fast and slow modulations are evalu ated within three different 
frequency ranges – below 400 Hz,  between 400 and 2500 Hz, and 
above 2500 Hz. A modulation “index” is then formed by taking 
the ratio of the rms amplitude of the slow or fast envelope signal 

Figure 1. Judging “importance” of the principal components obtained from 
a set of 25 sound quality metrics calculated for 32 different sounds: (a) 
“scree” plot of the eigenvalues, (b) cumulative percentage of observed vari-
ance repre sented by the PCs.

100

80

60

40

20

0

P
er

ce
nt

10

5

0

E
ig

en
va

lu
e

5                      10                     15                     20                     25
                               PC Number

1                  5                     10                     15                    20                     25
                                                 PC Number

(b)

(a)Table 2. Rotated and sorted PC weighting factors for the first four prin-
cipal components computed from a set of 25 SQ metrics calculated for 
32 sounds.

 Metric Number PC1 PC2 PC3 PC4

 3 0.402 –0.003 –0.014 –0.123
 4 0.392 –0.03 0.003 –0.004
 1 0.362 0.012 –0.057 –0.223
 2 0.354 0.001 –0.013 0.086
 8 0.33 –0.027 0.029 0.118
 9 –0.323 0.045 0.004 –0.123
 5 0.255 0.215 0.136 –0.165
 22 –0.123 –0.498 0.057 –0.118
 7 0.14 –0.369 0.019 0.087
 18 0.061 0.359 –0.166 0.274
 20 –0.2 –0.27 0.037 0.188
 21 –0.127 0.247 0.085 0.014
 11 –0.182 0.216 0.072 –0.124
 13 –0.059 0.113 0.478 0.079
 12 0.096 0.14 0.476 0.075
 15 –0.088 0.267 –0.419 0.091
 23 –0.063 –0.15 0.39 0.01
 19 –0.032 0.3226 0.329 –0.087
 17 –0.029 0.083 0.013 0.359
 16 –0.009 0.008 –0.06 0.347
 25 0.081 0.071 –0.043 –0.32
 14 0.023 –0.068 0.077 0.3
 24 –0.082 –0.06 0.055 –0.295
 10 0.069 –0.0-44 –0.025 0.291
 6 0.051 –0.045 0.164 0.288
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of predicting user reactions to the sounds of other products in 
this same general class using the same set of weight ing factors 
given by Table 2 to compute the MP scores for these new sounds. 
Alternatively, PCA could be applied again to form a new set of 
weighting factors based on the SQ metrics values com puted for 
the new set of sounds. However, this latter approach would not be 
recommended unless the number of new sounds (the number of 
“observations” for the PCA) was compara ble to or greater than the 
number of sounds used to form the original PC weighting factors 
like those in Table 2.

Conclusions
An approach has been described that attempts to establish a link 

between a set of objective sound quality metrics and subjective 
impressions of product sounds. The method makes use of princi-
pal components analysis to first reduce a large number of metrics 
into a weighted combination of smaller groups of metrics. To do 
this, PCA is applied to a large set of metric values calculated on 
a large set of sounds, all of which are presumed to originate from 
a general type of product class (vacuum cleaners or front-loading 
washing machines or lawn tractors, for example). The first few 
PCs are then used to develop a set of weighting factors that are 
applied to the metric val ues to obtain a (reduced dimension) PC-
based “metrics profile.”

A transforma tion matrix between the resulting MP “scores” for 
these sounds and a set of corresponding jury rat ings on particular 
attrib utes for these same sounds can then be calculated and evalu-
ated in terms of its abil ity to pre dict the jury ratings. A satisfactory 
transfor mation can therefore allow physical meas ure ments of 
sounds from different products or product versions within a prod-
uct class (made as changes are made to the product) to reasonably 
pre dict the effect of these changes on perceived SQ without the 
need to conduct repeated jury studies.

Applying the technique to a set of 25 metrics calculated on the 
sounds from 32 different varia tions of a particular type of yard 
maintenance equipment resulted in a regression coeffi cient of 
0.47 when used to predict attribute-rating values obtained from a 
consumer jury that was exposed to these same sounds. The next 
step would be to assess the accuracy of the ratings pre dicted if 
this same transformation were then applied to a new set of sounds 
obtained from this same product class.

Future directions in this area include investigating the possible 
use of alternate statisti cal techniques that are somewhat related to 
principal components analysis, such as the regres sion techniques of 
principal components regression and partial least-squares (PLS) re-
gression. This later technique may offer a more direct and possibly 
more robust way to generate a reduced-order model for predicting 
SQ ratings from metric values than the PCA-based metric-profiles 
approach described here.

PLS can be thought of as a cross between multiple linear regres-
sion and PCA, but unlike PCA, PLS directly considers the observed 
response values (the jury rat ings in our case), finding combinations 
of predictor PCs that have large covariance (a meas ure of the degree 
to which two variables change together) with response values.4 In 
gen eral, PLS is more of a predictive technique compared to the 
more interpretive technique of PCA. We hope to report on the 
results of this and our other on-going work in these areas in the 
near future.
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numbers of PCs, while keeping in mind the guiding information 
such as that provided by Figure 1.

The weightings for the reduced set of PCs are then used to cal-
culate the corresponding “scores” for each of the sounds under 
consideration using the model for each PC:1

where:
 PCn = resulting “score” for the nth PC
 Y = (standardized) metric values for each of the p metrics
 w = weights on these variables

For our example, the resulting scores would then consist of four 
values (from the four PCs) for each of the 32 sounds. We refer to 
these values as a (PC-based) “metrics profile” (MP) – one MP for 
each sound. The MPs are then all shifted upward so that all are 
greater than zero for ease of interpretation.

Transformation from Metrics Profile to Jury Ratings
The MP scores, along with the mean values of normalized jury 

ratings previously obtained for these same sounds, were then used 
to calculate a linear transformation matrix X between the MPs 
and the jury ratings. This was done by solving for X in the general 
system of equations described by:

where:
 A = N×Q matrix of metrics profile scores for the sounds  

(N = number of sounds, Q = number of principal compo-
nents retained)

 B = N×M matrix of mean jury ratings on M attributes for these 
same sounds

 X = desired Q×M transformation matrix
Since N (the number of sounds) will generally be greater than Q 

(the number of PCs retained), Eq. 2 becomes an over-determined 
system of equations (32 equations in four unknowns for our ex-
ample). The transformation matrix (or vector if jury ratings are for 
a single attribute only) X can then be determined in a least-squared 
error sense using, for example, singu lar-value decomposition to 
generate a “pseudo-inverse” of the A matrix.3

Figure 2 summarizes how well the resulting transformation 
vector in this example was able to predict the jury ratings for the 
attribute “perceived power” of the product using the MP values 
derived from the first four principal components. In this case, the 
R2 “goodness-of-fit” indicator was about 47%. The four furthest 
“outliers” in Figure 2 are associated with the four sounds included 
in the jury study that were not created by altering the sounds of 
various components in the baseline unit (these “extra” sounds 
were the sounds of competitor units, alternate mod els, etc.). If we 
do not include these four outliers, the resulting R2 value increases 
to about 88%.

This same transforma tion could now be evalu ated in terms The author can be reached at: dbowen@acentech.com.

AX = B (2)

PCn = w(n)1Y1 + w(n)2Y2 + ... + w(n)pYp (1)

Figure 2. Jury ratings on the attribute “perceived power” (on a normalized 
scale of 0-100) for the sounds of 32 different versions of a piece of yard 
maintenance equipment, vs. ratings predicted by multiplying an SQ “metrics 
profile” derived from these same sounds by a transformation vector.

R2 = 0.47
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